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to carry out searching and interpolation efficiently. Brack-
bill and Ruppert [6] and Westermann [7] have designedA generalized iterative algorithm for searching and locating parti-

cles in arbitrary meshes is presented. The algorithm uses Newton schemes to perform searching and bilinear interpolation on
method to invert a bijective map of the mesh elements onto a structured meshes composed of nonuniform quadrilaterals.
reference element, together with a criterion to move from element Löhner and Ambrosiano [8] devised an algorithm for un-
to element in the mesh. The generality of the method is shown

structured meshes composed of linear triangles or tetra-by explicit formulations for linear and quadratic triangular and
hedra. Although they differ on implementational aspects,quadrilateral elements. Numerical examples demonstrate the

performance of the method as well as its higher accuracy and all these works share the idea described in the following.
versatility. Q 1997 Academic Press Given a domain V (for simplicity, we assume that V is

in the plane, i.e., V , R2) on which a mesh has been
generated, one wishes to know the element Vj of the mesh,

1. INTRODUCTION where the point xp is located. The spatial location xp is an
interpolation point for a vector or scalar field whose valuesComputer models based on particle dynamics, known
are known at the mesh-points. The schemes proposed inas particle methods, are often used in science and engi-
[6–8] to find the element Vj define a one-to-one mappingneering. The book by Hockney and Eastwood [1] gives a
Fj from Vj to a reference element V̂ defined in the planecomprehensive account of these methods and their applica-
(p, q). Then, if xp [ Vj there exists one and only one pointtion in plasma physics, astrophysics, and molecular dynam-
p 5 (p, q) [ V̂ such thatics. Numerical algorithms closely related to the idea of

particle methods are also becoming prominent in atmo-
xp 5 Fj(p), (1)spheric sciences and fluid dynamics [2–5]. Such algorithms

are known as semi-Lagrangian schemes in meteorology,
andand characteristic-Galerkin methods in the context of finite

elements. Several particle methods have in common at
least two interrelated features, namely a searching step a0 # p # b0 ,
followed by an interpolation step. The interrelation arises

c0 # q # d0 ,from the fact that, to perform interpolation at a point
located in the interior of a mesh, identification of the host

where the real constants a0 , b0 , c0 , and d0 are known byelement is generally required.
construction (boldface characters denote vectors or vector-Particle methods as well as semi-Lagrangian and charac-
valued functions unless otherwise stated). If xp Ó Vj , thenteristic-Galerkin methods are computationally useful by
at least one of the following conditions is satisfied:virtue of their accuracy and linear unconditional stability.

This allows for larger time steps in the integration process
and hence, for a given degree of accuracy, a potentially
faster and more economical numerical procedure. How- xp Ó Vj R 5

p Ó [a0 , b0 ], or

q Ó [c0 , d0 ], or

both.

(2)
ever, if the mesh is not structured, or is nonuniform in
each coordinate direction, these numerical methods may
be quite slow. The underlying reason is the poor perfor-
mance of the algorithms in the searching and interpolation Provided that (2) is true, the schemes have a criterium to

choose a neighbour element of Vj in order to define a newsteps. In order to overcome this drawback, there have been
a number of researchers who have proposed some schemes Fj and continue the test. Löhner and Ambrosiano [8] use
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158 ALLIEVI AND BERMEJO

finite element techniques to construct Fj on linear sim-
plexes. At this point, we should remark that their scheme
for simplexes and Westermann’s [7] for quadrilaterals build
the mapping Fj using linear and bilinear interpolation, re-
spectively. For cases such as curved simplexes and quadri-
laterals these schemes may experience difficulties, or even
fail to find the rigth element where the point xp is located.
This is demonstrated by a numerical example presented
in Section 4.

In this paper, we propose a scheme for search and loca-
tion based on similar ideas as those mentioned above, but
it represents a generalization of previous works. The salient
features of our algorithm are the following:

FIG. 1. Mapping from reference element V̂ to an element Vj of the grid.(a) In contrast with the algorithms proposed in [6–8],
ours can be applied to curved elements, both simplexes and
quadrilaterals, with higher order interpolation functions to
define the mapping Fj . size, it is convenient from a numerical point of view to

(b) For linear simplexes, our algorithm coincides with impose some regularity conditions on the mesh elements.
that of Löhner and Ambrosiano [8]. However, unlike West- We now formulate such conditions:
ermann’s scheme [7], it does not require the solution of a

• First, we assume that the mesh is regular in the sensequadratic equation to determine (p, q) for linear quadrilat-
that there exists a constant s . 0, such that if hj iserals.
the largest dimension of Vj and rj is the diameter of

(c) The vectorization of our algorithm can be per- the largest circle (or sphere) inscribed in Vj , then
formed in the same manner as in [7, 8]. Furthermore, it hj/rj # s, for any Vj . This condition implies that
can also be used as the basic scheme in the hierarchy of arbitrarily thin elements, or elements with arbitrarily
robust, vectorizable algorithms proposed by Löhner [9]. small angles are not allowed.
In addition, implementation of our scheme in any particle • Second, let Vj ? Vk , then
method is straightforward, particularly in finite element
codes since the concepts presented in this work are stan-
dard in finite element technology.

Vj > Vk 5 5
B,

Gij ,

xij ,

no intersection, or

one side in common, or

one point in common.

The remainder of the paper is organized as follows. We
describe in Section 2 the scheme. In Section 3 we study
the convergence. Section 4 is devoted to illustrate the per-
formance of the scheme through some significant tests. These are standard conditions that any mesh generating
Finally, some conclusions are included in Section 5. algorithm is supposed to satisfy. Next, given a point xp 5

(xp , yp ) in V, we wish to know whether xp is in Vj . In order
2. SEARCH–LOCATE ALGORITHM to do so, we shall assume that for any Vj there exists a

one-to-one mapping Fj from an element of reference V̂ toFor simplicity, we formulate the algorithm in a domain
Vj . Figure 1 illustrates this idea. Observe that V̂ is in theV , R2 . Application of the algorithm to a domain
coordinate plane (p, q) such thatV , R3 will be clear from the formulation. We assume

that V is partitioned into small elements Vj ; some of them
V̂ 5 h(p, q) u 21 # p, q # 1j for quadrilaterals,

(3)
may have curved boundaries, such that given an integer
M $ 1, V̂ 5 h(p, q) u 0 # p, q # 1, 0 # 1 2 p 2 q # 1j

for triangles.

V 5 <
M

j51

Vj ,
Following [8], we set

N1 5 1 2 p 2 q,where V denotes the domain plus its boundary and M is
the number of elements that form the numerical mesh.

N2 5 p, (4)
The vertices of Vj are the mesh-points. Although, the ele-
ments Vj can be either triangles or quadrilaterals of any N3 5 q,
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so that we can define V̂ for triangles

V̂ 5 h(p, q) u max (N1 , N2 , N3 )# 1

and (5)

min (N1 , N2 , N3 ) $ 0j.

Therefore, if for any j 5 1, 2, ..., M, xp 5 (xp , yp ) [ Vj ,
then there exists (p, q) [ V̂ such that FIG. 2. Mapping for linear triangular elements.

G1 j(p, q ) ; xp 2 F1 j(p , q ) 5 0,
(6)

G2 j(p , q ) ; yp 2 F2 j(p , q ) 5 0.
In the following subsections, we focus our attention on

the implementation of algorithm (7)–(8) for linear andOn the other hand, if for some j, xp 5 (xp , yp ) Ó Vj , then
quadratic simplexes and quadrilaterals. The extension tothere is no (p , q ) [ V̂ such that (6) holds. Hence, to find
3D cases will be clear from the formulation. The mapping(p , q ) [ V̂ that satisfies (6) is equivalent to calculating
Fj of the reference element V̂ onto any Vj [ V is definedthe unique solution of the equation
in this work by the so-called isoparametric technique, ex-
tensively used by the finite element community [10].

Gj(p) 5 0.

2.1. Linear TrianglesAn efficient procedure to solve (6) is the Newton
method, for we know that under certain conditions this The one-to-one mapping Fj : V̂ R Vj , as shown in Fig.
method has a quadratic rate of convergence. We shall ob- 2, is given as
tain such conditions below. For the time being, we shall
assume that if xp [ Vj , the Newton method will converge
to the unique solution (p , q ) [ V̂ independently of the F1 j (p, q) ; x 5 O3

i51
xiFi (p, q),

(9)initial guess (p0, q0 ) [ V̂. A formulation of the Newton
method as a search–locate algorithm to solve (6) is as

F2 j(p, q) ; y 5 O3
i51

yiFi (p, q),follows:

(ST1) Assume that xp 5 (xp , yp ) [ Vj and let
(p0, q0 ) [ V̂ be an initial guess solution. Then for k 5 0, where hFi j3

i51 are the so-called basis functions, whose ex-
1, ..., N pressions are

5p k11

q k1165 5p k

qk62 J 21
j (pk, qk ) 5xp 2 F1 j(pk, qk )

yp 2 F2 j(pk, qk )6 . (7) F1(p, q) 5 1 2 p 2 q,

F2(p, q) 5 p, (10)

Stage ST1 is the localization stage of our algorithm. F3(p, q) 5 q,
(ST2) If xp 5 (xp , yp ) Ó Vj , the iterate (pk11, qk11 ) Ó

V̂. Then, select a neighbour element of Vj and go to ST1. and (xi , yi )3
i51 denotes the coordinates of the vertices of

Stage ST2 is the search stage of our algorithm. Criteria to the triangle Vj . Observe that for this particular case the
perform this stage will be given in the following subsec- basis functions Fi coincide with the functions Ni defined
tions. in (4).

Combining (9) and (10), we setIn (7), J 21
j (pk, qk ) is the inverse of the Jacobian matrix

Jj(pk, qk ) of the mapping Fj(p, q). This Jacobian matrix
is given by

5x

y6 5 3x2 2 x1

y2 2 y1

x3 2 x1

y3 2 y1
4 5p

q6 1 5x1

y1
6 . (11)

Consequently, the mapping Fj (p, q) is an affine transfor-Jj(pk, qk ) 5 23
­F1 j(pk, qk )

­p

­F2 j(pk, qk )
­p

­F1 j(pk, qk )
­q

­F2 j(pk, qk )
­q

4 . (8)
mation of V̂ onto Vj that maps the vertices of Vj . Since
the three vertices are not aligned, then the matrix of the
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transformation can be inverted. Now, if we apply (7) and
(8) for the linear triangle and use (9) and (10), we have
the procedure

• For k 5 0, 1, 2, ... set

5pk11

qk1165 5pk

qk61
1
D 3y3 2 y1

y1 2 y2

x1 2 x3

x2 2 x1
4

FIG. 3. Mapping for bilinear quadrilateral elements.

5xp 2 O3
i51

xiFi(p k, qk)

yp 2 O3
i51

yiFi(p k, qk)6 , (12)
S1 with an Vm that is the element where xp was located in
the previous iteration.

(ii) Sometimes, especially in particle and characteris-
where D 5 (x2 2 x1 )(y3 2 y1 ) 2 (x3 2 x1 )(y2 2 y1 ). tic-Galerkin methods, the points xp may lie outside V. This

situation can be easily detected by the selection criterionAt this point, it is important to remark that (12) is identi-
for which one needs to generate a two-dimensional integercal to Eq. (4) of the paper by Löhner and Ambrosiano [8].
array containing the neighbour elements to each elementSuch coincidence is only true for linear triangles, because
Vj . If Vj is a boundary element, then some of the entriesthe matrix in (12) is the inverse matrix of the affine transfor-
for Vj in such array are zero.mation (11) between V̂ and Vj . Then, if xp [ Vj , the iterate

(p1, q1) will be the exact solution (p, q) for any initial
2.2. Convex Four-Point Quadrilateral Elementsguess (p0, q0 ) in V̂. Since Vj is an arbitrary element, then

we have to test whether (p1, q1 ) is in V̂, for if this is true We now consider that the domain V is divided into four-
then xp [ Vj . Using (5), (p1, q1 ) [ V̂ if point convex quadrilaterals as the one shown in Fig. 3. The

one-to-one transformation Fj : V̂ R Vj is given by (see [10])
max (N 1

1 , N 1
2 , N 1

3 ) # 1

min (N 1
1 , N 1

2 , N 1
3 ) $ 0,

(13)
F1 j (p, q) ; x 5 O4

i51
xiFi(p, q),

(14)
where we have used the notation N k

i 5 Ni(pk, qk ), for F2 j (p, q) ; y 5 O4
i51

yiFi(p, q),
i 5 1, 2, 3. If (13) does not hold, the algorithm chooses a
neighbour of Vj , according to the selection criterium for

where the basis functions hFi j4
i51 aresimplexes as described in [8], and goes to (9). Such criteria

can be expressed as follows:
F1(p, q) 5 !f(1 2 p)(1 2 q),

• Let l 5 index(min (N k
1 , N k

2 , N k
3 )), F2(p, q) 5 !f(1 1 p)(1 2 q),

(15)• Choose element Vk such that Gjk 5 Vj > Vk is the
F3(p, q) 5 !f(1 1 p)(1 1 q),side of Vj opposite to the vertex xl .
F4(p, q) 5 !f(1 2 p)(1 1 q),In summary, the search–locate algorithm for simplexes can

be divided into the following steps: and (xi , yi )4
i51 denote the vertices of the convex quadrilat-

eral Vj . Operating as we did with the linear triangle, weSEARCH–LOCATE ALGORITHM FOR LINEAR TRIANGLES
have the iterative process(SALT).

• For k 5 0, 1, 2, ... set(S1) Given xp , pick any Vm , V and any p0 [ V̂ to build
Fm(p0 ) using (9)–(11).

(S2) Use (12) to find (p1, q1 ). 5pk11

qk1165 5pk

qk6
(S3) Apply (13). If (13) holds STOP, ELSE,

(S4) Apply the selection criterium and GO TO S1.
1

1
Dk 3 b2 1 b3pk

2b1 2 b3qk

2a2 2 a3pk

a1 1 a3qk 4 5xp 2 xk
p

yp 2 yk
p
6 ,

Remarks. (i) If the algorithm is part of an iterative
numerical scheme, then it may be advantageous to start (16)
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FIG. 5. Mapping for quadratic triangular elements.

the entries of such an array are zero when Vj is a boundary
element. Hence, by checking IE( j, k), one can easily knowFIG. 4. Search criterium for quadrilateral elements.
whether xp is outside V. The selection criterion for convex
four-point quadrilaterals is then

• Given the iterate (pk, qk ), choose the neighbour ele-where
ment according to the directives given in Fig. 4.

Then, the search–locate algorithm for four-point convexxk
p 5 o4

i51xiFi(pk, qk ), yk
p 5 o4

i51 yiFi(pk, qk ),
quadrilaterals is

a1 5 !f(x2 2 x1 1 x3 2 x4 ), b1 5 !f(y2 2 y1 1 y3 2 y4 ),
SEARCH–LOCATE ALGORITHM FOR LINEAR QUADRILAT-

a2 5 !f(x3 2 x1 1 x4 2 x2 ), b2 5 !f(y3 2 y1 1 y4 2 y2 ), ERALS (SALQ).

a3 5 !f(x1 2 x2 1 x3 2 x4 ), b3 5 !f(y1 2 y2 1 y3 2 y4 ), (S1) Given xp , pick any Vm [ V and p0 5 (0, 0) [ V̂
and build Fm(p0 ) using (14)–(15).Dk 5 (a1b2 2 a2b1 ) 1 (a1b3 2 a3b1 ) pk 1 (a3b2 2 a2b3 ) qk.

(S2) Use (16) to find the iterate (p1, q1).
Note that for k 5 0, it is computationally advantageous (S3) Apply (17). If (17) holds, then GO TO S2 and iterate

to take (p0, q0 ) 5 (0, 0), the center of V̂. We notice, by until a given tolerance is attained. ELSE,
inspection of (15), that xk

p and yk
p do not depend linearly (S4) Apply selection criterium and GO TO S1.

upon p and q as in the linear triangle case. So if xp [ Vj ,
it will generally be necessary more than one iteration to 2.3. Curved Elements
get (p, q) [ V̂, the image of xp . For convex four-point

We next illustrate the application of our algorithm onquadrilaterals Westermann [7] proposes an ad hoc iterative
grids composed of elements with curved sides (or faces inalgorithm to compute (p, q). However, our iterative algo-
R3). The construction of a one-to-one mapping of V̂ ontorithm is more general because it can be applied to curved
a curved element Vj is less straightforward than in the twosimplexes and quadrilaterals.
previous cases. We shall use the isoparametric elementIt remains to establish a selection criterion to know
concept to define the one-to-one mapping Fj for curvedwhether the iterates (pk, qk ) obtained by (16) are in V̂
elements. In this technique one defines the one-to-onewhen xp is in Vj . To do so, let us assume that the iterative
mapping Fj on the reference element by a piecewise poly-scheme (16) is convergent. So, if xp [ Vj the iterates
nomial of order higher than one. Thus, with reference to(pk, qk ) [ V̂. Therefore, they satisfy the conditions
Figs. 5 and 6, Fj is a quadratic polynomial for the triangle

21 # pk # 1,
(17)

21 # qk # 1.

Then, if (17) does not hold, xp Ó Vj and the algorithm
has to search a neighbour element to Vj . In order to decide
on which neighbour to move to, we must take into account
that if Vj is not a boundary element there are eight elements
surrounding it (Fig. 4). We represent in this figure the
neighbour selection criterion according to the values of
(p, q). If one stores the eight neighbours of Vj in a two-

FIG. 6. Mapping for quadratic quadrilateral elements.dimensional integer array IE( j, k 5 1, ..., 8), then some of
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and a biquadratic polynomial for the quadrilateral. Follow- where
ing Ciarlet [10], we shall say that Vj is a regular isoparame-
tric element if the following conditions are satisfied: a1 5 4x4 2 x2 1 3x1 , b1 5 4x6 2 x3 2 3x1 ,

(i) Let hj and rj be defined as in the beginning of a2 5 4(x1 1 x2 2 2x4 ), b2 5 4(x1 2 x4 1 x5 2 x6 ),
Section 2. Then there exists a positive constant s . 0 such

a3 5 4(x1 2 x4 1 x5 2 x6 ), b3 5 4(x1 1 x3 2 2x6 ),that rj/hj $ s.

(ii) hj approximates to zero. Dk 5 (a1 1 a2 pk 1 a3qk )(d1 1 d2 pk 1 d3qk )
(iii) Let h 5 max(hj ). Then the distance between the 2 (b1 1 b2 pk 1 b3qk )(c1 1 c2 pk 1 c3 qk ).

midpoints xi of the curved sides of Vi and the points x*i
(see Figs. 5 and 6) is of order h2. That is, kxi 2 x*i k 5 O(h2).

Similar expressions for the c’s and d’s can be obtained by
The above conditions ensure the invertibility of the map- replacing xi by yi in each of the equations for the a’s and

ping Fj . For further details on isoparametric elements of b’s. The neighbour criterion selection for this case is identi-
higher order and higher dimensions see Chapter IV of [10; cal to that of linear triangles used in [8]. This is because
11]. For purposes of illustration and simplicity, we restrict V̂ for the present case is also defined by (3). We can now
the application of our algorithm to those elements shown formulate a search–locate algorithm for quadratic
in Figs. 5 and 6. These are commonly used in finite element curved triangles.
codes for the solution of the Navier–Stokes equations.

SEARCH–LOCATE ALGORITHM FOR QUADRATIC ISOPAR-
2.3.1. Quadratic Isoparametric Triangles. The one-to- AMETRIC TRIANGLES (SAQT).

one mapping Fj : V̂ R Vj (Fig. 5) is given as
(S1) Given xp , pick any Vm , V and any p0 [ V̂ to build

Fm(p0 ) using (18)–(19).
F1 j (p, q) ; x 5 O6

i51
xiFi(p, q),

(18)
(S2) Use (20) to find (p1, q1 ).

(S3) Apply (13). If (13) holds, then GO TO S2 and iterate
F2 j (p, q) ; y 5 O6

i51
yiFi(p, q), until a given tolerance is attained. ELSE,

(S4) Apply triangle selection criterium and GO TO S1.

where (xi , yi )6
i51 are the coordinates of the nodes of Vj and Observe that SAQT differs from SALT in the expression

the basis functions hFi j6
i51 are given by for Fm and in S3. Also note that if isoparametric triangles

of order higher than two are used, the expression for Fm

in SAQT has to be changed.F1(p, q) 5 (1 2 2p 2 2q)(1 2 p 2 q),

F2(p, q) 5 p(2p 2 1), 2.3.2. Quadratic Isoparametric Quadrilaterals. The
one-to-one mapping Fj : V̂ R Vj (Fig. 6) is given asF3(p, q) 5 q(2q 2 1),

(19)
F4(p, q) 5 4p(1 2 p 2 q),

F1 j (p, q) ; x 5 O9
i51

xiFi(p, q),

(21)
F5(p, q) 5 4pq,

F6(p, q) 5 4q(1 2 p 2 q).
F2 j (p, q) ; y 5 O9

i51
yiFi(p, q),

Using (7) and (8), together with (18) and (19), yields
the iterative procedure

where (xi , yi )9
i51 are the coordinates of the nodes of Vj and

• For k 5 0, 1, 2, ..., set the basis functions hFi j9
i51 are given by

F1(p, q) 5 !fpq(1 2 p)(1 2 q),5pk11

qk1165 5pk

qk61
1

Dk

F2(p, q) 5 !fpq(1 1 p)(q 2 1),

F3(p, q) 5 !fpq(1 1 p)(1 1 q),

3 d1 1 d2pk 1 d3 qk

2c1 2 c2 pk 2 c3 qk

2b1 2 b2 pk 2 b3 qk

a1 1 a2 pk 1 a3q k 4 5xp 2 xk
p

yp 2 yk
p
6 ,

F4(p, q) 5 !fpq(p 2 1)(1 1 q),

F5(p, q) 5 !sq(1 2 p2)(q 2 1), (22)(20)
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F6(p, q) 5 !sp(1 1 p)(1 2 q2 ), The neighbour criterion selection for curved quadrilater-
als is the same as for the straight side quadrilaterals becauseF7(p, q) 5 !sq(1 2 p2)(q 1 1),
V̂ for this case is also defined by (3). A step by step formula-F8(p, q) 5 !sp(p 2 1)(1 2 q2 ),
tion of our search–locate algorithm for quadratic isopara-F9(p, q) 5 (1 2 q2)(1 2 p2 ).
metric quadrilaterals is as follows.

Substituting (22) and (21) in (7) and (8) yields the itera-
SEARCH–LOCATE ALGORITHM FOR QUADRATIC ISOPAR-tive procedure

AMETRIC QUADRILATERALS (SAQQ).

• For k 5 0, 1, 2, ..., set (S1) Given xp , pick any Vm [ V and p0 5 (0, 0) [ V̂
and build Fm(p0) using expressions (21)–(22).

(S2) Use (23) to find the iterate (p1, q1 ).5pk11

qk1165 5pk

qk61
1

Dk 3a(pk, qk )

c(p k, qk )

b(pk, qk )

d(pk, qk )4 5
xp 2 xk

p

yp 2 yk
p
6 ,

(S3) Apply (17). If (17) holds, then GO TO S2 and iterate
until a given tolerance is attained. ELSE,(23)

(S4) Apply selection criterium and GO TO S1.
where the entries of the 2 3 2 matrix are in this case

Algorithm SAQQ can be used for higher order isopara-given by
metric quadrilaterals by changing the formulation of the
mapping Fm in (21).a(p, q) 5 a0 1 a1 p 1 a2 q 1 a3 pq 1 a4 p2 1 a5 qp2

b(p, q) 5 2(b0 1 b1 p 1 b2 q 1 b3 pq 1 b4 p2 1 b5 qp2 )
3. CONVERGENCE

c(p, q) 5 2(c0 1 c1 p 1 c2 q 1 c3 pq 1 c4 q2 1 c5 pq2 )
We are now going to prove that the iterative procedure

d(p, q) 5 d0 1 d1 p 1 d2 q 1 d3 pq 1 d4 q2 1 d5 pq2
of our algorithm converges to a point p [ V̂ such that
whenever xp [ Vj , Fj(p) 5 xp . Our strategy to prove con-Dk 5 a(pk, qk )d(pk, qk ) 2 c(pk, qk )b(pk, qk ).
vergence is based on results of Chapter X of [12].

Let us assume that after a finite number of searches,The coefficients ai , bi , ci , and di are expressed in terms of
using the corresponding neighbour selection criterion, thethe coordinates of the nodes of Vj as
algorithm has reached the right element Vj . Then we have
to prove that starting with any p0 [ V̂ the iterates hpkj,a0 5 !s(y7 2 y5 ),
k 5 1, 2, ..., converge to p. Thus,

a1 5 !s(y13 2 y24 ),

a2 5 2(y57 2 y9 ), lim
kRy

pk 5 p.

a3 5 y23 2 y14 1 y8 2 y6 ,

For simplicity, let us write the iterations of the algorithm asa4 5 !s[(y34 2 y7 ) 2 (y12 2 y5 )],

a5 5 !s o4
i51 yi 2 o8

i55 yi 1 2y9 . pk11 5 Tj pk, k 5 0, 1, 2, ..., (24)

where yij 5 !s(yi 1 yj ). Equivalent expressions are obtained
for V̂ included in a bounded domain D and any Vj ,for the bi’s by replacing the yi’s by the xi’s. Similarly,
Tj : D , Rd (d 5 2 or 3) is

c0 5 !s(y6 2 y8 ),
Tj pk 5 pk 1 J 21

j (pk )(xp 2 Fj(pk )), (25)
c1 5 2(y68 2 y9 ),

c2 5 !s(y13 2 y24 ), where J 21
j is the inverse of the Jacobian matrix of Fj(pk ).

The point p [ V̂ is a point of attraction of (25) if there isc3 5 y34 2 y12 1 y5 2 y7 ,
an open neighbourhood U of p such that U is included in

c4 5 !s[(y23 2 y6 ) 2 (y14 2 y8 )], D, and for any p0 [ U the iterates hpk j all lie in U and
converge to p. We notice that by construction the following

c5 5 !s o4
i51 yi 2 o8

i55 yi 1 2y9 .
properties hold:

(i) Fj : V̂ R Vj is continuous with first and secondAs before, expressions for the di’s are obtained by replac-
ing the yi’s by the xi’s. continuous derivatives on V̂.
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(ii) The Jacobian matrix Jj is nonsingular on V̂.

(iii) Fj(p) 2 xp 5 0.

(iv) For any vector h [ Rd, h ? 0, D2Fj(p) hh ? 0,
where D 2 denotes second derivatives.

Then, the Newton attraction theorem (see Chapter X of
[12]) guarantees that p is a point of attraction of (24).
Furthermore, there exists a constant K such that

upk11 2 pu # K upk 2 pu2 for any k 5 0, 1, 2, ...,

where u?u denotes maximum norm. This bound expresses
the well-known quadratic convergence of the Newton
method.

Remarks. (i) The first conclusion to be drawn from
the convergence proof is that, for any initial guess element
Vm , the algorithm will end up in the right element Vj . This

FIG. 7. Particle trace using linear triangular elements.is so, because if xp is not in Vm , then there is no p in V̂
such that the condition Fm(p) 2 xp 5 0 holds. Hence, p is
not a point of attraction of the iterative procedure and,

containing a NACA 0012 airfoil at an angle of attack oftherefore, the iterates pk do not lie in V̂. So the algorithm
208. In all simulations, the spatial position of the particlewill apply the proper neighbour selection criterion to move
is entered as a known value. The search is commenced atto another element.
an element that is specified a priori.

(ii) The property that the Jacobian matrix Jj is not Figure 7 shows the search of a particle located on the
singular is a crucial point because it guarantees that our bottom boundary of the triangular domain; the inset shows
algorithm will never break down. its position. The search was carried out using the criterium

of Löhner and Ambrosiano [8]. Both our iterative localiza-(iii) It is important to remark that our algorithm finds
tion scheme and the one in [8] were used to conduct thisnot only the element where xp lies, but it also gives the
test. As expected, both methods give identical results forpoint p which is the image of xp in V̂. This is an important
the particular case of a straight boundary. However, for afeature, particularly for curved elements and bilinear quad-
domain with curved elements, such as that shown in Fig.rilaterals because, as finite element codes do, it is far more
8, this is not the case. It is evident from this figure thatconvenient to interpolate on the reference element V̂ than

on the mesh in the physical domain.

(iv) Once the element hosting xp has been identified,
the number of iterations k required by the Newton method
to obtain converged values (p, q) of the master element
is certainly a function of the nonuniformity of the grid.
However, if the grid varies progressively according to the
hypotheses established in Section 2 and if using curved
elements the conditions of isoparametric elements are satis-
fied, then the interval of variation of k over all the elements
in the grid is small. Note that one should avoid highly
distorted elements or elements with very small angles that
produce very small values of the Jacobian of the transfor-
mation.

4. NUMERICAL RESULTS

In this section, numerical results are presented corre-
sponding to simply connected domains using linear and
quadratic triangular elements. For quadrilateral elements,

FIG. 8. Particle trace using quadratic triangular elements.searches are performed in a doubly connected domain
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TABLE I

Performance of SALT, SAQT and SAQQ Algorithms

Total CPU CPU/element
Case (seconds) No. elements searched (seconds)

SALQ 27/100 59 0.457/100
SAQT 28/100 59 0.474/100
SAQQ 33/100 50 0.660/100

the distance measured as a straight line from the center
of the element that is searched and the actual position ofFIG. 9. Particle trace using quadratic quadrilateral elements.
the fluid particle. It is apparent from this figure that the
search is conducted in an element located progressively

only our method is able to locate the particle positioned closer to the particle location.
on the circular portion of the boundary. At this point we would like to remark that it is possible

Figure 9 shows two different searches on a structured that, when searching over long spatial distances in multiply
grid generated by the finite element solution of an elliptic connected domains, a particle search can experience a phe-
system [13]. The particle host elements are located at two nomenon we have termed ‘‘locking.’’ By this we mean that
different locations in the doubly connected domain. The the search process is carried out between the same two,
first case, the search labelled as 1, the particle is located or more, elements without progressing on its path to the
approximately at (x, y) 5 (0, 22.2). The search is com- target particle. This inconvenience can be easily avoided
menced from the element on the top left corner. Clearly, by establishing an appropriate logic that checks for this
the particle is efficiently located from starting points lo- type of situations. Once the elements involved in the lock-
cated on opposite sides of the slit in the domain. ing process have been identified, a simple solution is to

The search labelled as 2, is a more stringent test. The ‘‘bump’’ the search to an element outside their sphere of
particle is located at (x, y) 5 (25.0, 24.0), the bottom left action and proceed normally with the trace.
corner of the domain. The search is started from an element Finally, we look at the run-time performance of the
located on the corner diagonally opposite to the particle searches conducted in Figs. 7, 8, and 9. These have been
host element. The particle is found after checking only 50 summarized in Table I. Linear triangles are marginally
elements in a domain of 1000 elements. Figure 10 shows faster than quadratic ones, and triangles conduct the search

more rapidly than quadrilaterals. Table II shows run-time
comparisons using various initial conditions xin , yin for
searching the target particle located at (x, y) 5 (25.0,
24.0) in Fig. 9. We notice that the CPU depends on the
number of elements searched to find the host element
rather than the initial distance from the target particle.
Note that CPU times given in Tables I and II include
various output instructions and should therefore be taken
as reference values only. All computations were carried

TABLE II

Performance of SAQQ Algorithm

Initial distance CPU
xin , yin from target No. elements searched (seconds)

(4.70, 23.64) 0.47 2 ,1/100
(23.07, 21.77) 2.95 10 6/100
(21.44, 2.10) 5.28 22 11/100
(3.07, 22.01) 8.31 41 27/100

FIG. 10. Nondimensional distance between searched element and (4.89, 20.10) 10.63 50 33/100
particle location for trace 2 in Fig. 9.
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a final word, for all simulations conducted in this work,
once the host element was found no more than 3 iterations
were necessary to find converged values of (p, q) using a
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